If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-7+132=180
We move all terms to the left:
5x^2-7+132-(180)=0
We add all the numbers together, and all the variables
5x^2-55=0
a = 5; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·5·(-55)
Δ = 1100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1100}=\sqrt{100*11}=\sqrt{100}*\sqrt{11}=10\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{11}}{2*5}=\frac{0-10\sqrt{11}}{10} =-\frac{10\sqrt{11}}{10} =-\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{11}}{2*5}=\frac{0+10\sqrt{11}}{10} =\frac{10\sqrt{11}}{10} =\sqrt{11} $
| 4x+4=3x−1 | | -5u+5=41 | | 9x+15=7x-15 | | x3+x2+x+1=0 | | k÷3-11=-5 | | 3,63*10^(-6)*x^2-7,19x+1500000=0 | | R/r-52=-17/9 | | X2+24x=-80 | | 2y^2-3y+128=0 | | -50=-3x-7x | | 2(4h-13)=37+h | | 2=10x−4(2x−9) | | 8=-2c+-10 | | 10=5h=20 | | x3+x2+x+1=x+1 | | 2u^2+3u-1=0 | | 3=m/(-1)+2 | | -32t-16t^2+32=0 | | 68.6=7(m+3.6) | | 20=5(f-32)÷9 | | (x+3)(x-3)=5(x-3) | | 9.71-x=-3.4 | | 2x+15+x+90=180 | | 10x-4=178 | | -4-m/5=18 | | -2|2.2x-3.3|=-6.6 | | -2.5x=6.15 | | 2/5-7=12/5h-2h+3 | | 4+2x=35 | | 2(x+3)=3(×+5) | | 1=s-(-6) | | 2x+38=12x-83 |